

KTH ROYAL INSTITUTE OF TECHNOLOGY

CISLUNAR ORBITAL TRANSPORTATION STUDY OF SPACE ELEVATOR APEX ANCHOR RELEASES

Summary of Research

- As humankind expands further into space the safety, sustainability, and resource transportation requirements within CisLunar space will outpace the Tsiolkovsky rocket equation.
- Apex Anchor has enormous potential for Cislunar Space
- This presentation concludes six months of research and study.

Introduction

Apex Anchor to Gateway flight

• Cislunar Space

- Space Elevator
 - > Apex Anchor
- Tsiolkovsky rocket equation
- Mass Transportation
- Astronaut Safety

Ref: ISEC Image

Tsiolkovsky Rocket Equation

- Natural restriction for rockets
- Minimal delivery percentages
- Environmental Impact
- Dual Space Access

$$\Delta v = v_e \ln \frac{m_0}{m_f} = I_{sp} g_0 \ln \frac{m_0}{m_f} \quad (1)$$

 Δv (Maximum change of velocity of the vehicle) m_0 (Initial mass) m_f (Final mass) v_e (Effective exhaust velocity) I_{sp} (Specific impulse) g_0 (Gravity)

			0	
Launch Vehicle	Pad Mass	To LEO (with % of	To GEO (est.)	To Moon surface
		pad)	(with % of pad)	(with % of pad)
Atlas V	590,000	18,500 (3%)	7,000 (1.2%)	
Delta IV	733,000	28,770 (3.9%)	10,000 (1.4%)	
Falcon H	1,420,000	63,000 (4.4%)	26,000 (1.8%)	
Saturn V	2,970,000	140,000 (4.7%)		16,000 - 0.5%
Average		4% of Pad Mass	1.5% of Pad Mass	
Note: Data from web varies greatly - these numbers are representative only, ref. ISEC working documents				
summarizing information on web. [2]				

Table 1: Launch Vehicle Delivery Percentages to GEO

Mass Transportation

- Mass sent to Space
 - ➢ 26,000 tonnes
- Projected Projects
- The Space Elevator
- Travel times
 - 14 hours to moon

Table 2: Projected Space Projects

Project Name	Mass Required in Space	
	(in tonnes)	
Space Solar Power	3,000,000	
Moon Village	500,000	
SpaceX Colony	1,000,000	
L-5 O'Neill Colony	10,500,000	
L1 Sunshade System	34,000,000 - 83,000,000	
Mass in tonnes for potential projects in space. [8,9]		

Ref: ISEC Image

Apex Anchor

- Space Station
- Capabilities
 - Storage
 - > Assembly
 - Rescue Vehicle
- .2 g of acceleration (local force)
- Missions
 - Space Control Center
 - Emergency Astronaut Safety

Astronaut Safety

- Delay of Resources
- Meteorites/Space Debris
- System failure of:
 - > Transportation
 - Rocket malfunction
 - Insufficient Fuel
 - Habitation unit
 - Power Outage
 - Oxygen Supply
 - Medical Emergencies
- Habitation on and around the Moon

Emergency Response from Transportation Hub

- Cislunar Emergency Response Moon
 - From Earth, Manned 69 hours (Apollo 8)
 - From Earth, Unmanned 35 hours (Luna 2)
 - Apex Anchor 14 hours to moon
- Cislunar Emergency Response Other
- Emergency Aid

Ref: Moon Village Association

Conclusion

- Tsiolkovsky rocket equation
- Mass Transportation
- Apex Anchor
- Astronaut Safety
- Emergency Response from Transportation Hub
- Dual Space Access

Ref: ISEC Image

Thank you, Questions?

Daniel Griffin

KTH Engineering Mechanics, Teknikringen 8, 11428 Stockholm, Sweden, dgriffin@kth.se

Gunnar Tibert

KTH Engineering Mechanics, Teknikringen 8, 11428 Stockholm, Sweden, tibert@kth.se